Scalar weak maximum principle: Difference between revisions

From Diffgeom
No edit summary
 
m (6 revisions)
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{diffeq property}}
{{flow equation property}}


==Definition==
==Definition==


Consider a differential equation involving one dependent variable <math>u</math> that is a function of <math>M \times \R</math> where <math>M</math> denotes a manifold (whose generic point will be denoted as <math>x</math>) and <math>\R</math> corresponds to the tiem axis (whose generic point will be denoted as <math>t</math>).
===Basic definition===


An ''initial value problem'' corresponding to this differential equation is a specification of <math>u(x,0)</math> for each <math>x \in M</math>.
Let <math>M</math> be a [[differential manifold]] and <math>F</math> be a differential operator that acts on functions <math>M \to \R</math>. Consider the [[flow equation]] associated with <math>f</math>, namely the equation for <math>u:\R \times M \to \R</math> given as:


Such a differential equation is said to satisfy the '''maximum principle''' if for any solution <math>u</math>, if there are constants <math>C_1</math> and <math>C_2</math> such that <math>C_1 \le u(x,0) \le C_2</math> for all <math>x \in M</math>, then <math>C_1 \le u(x,t) \le C_2</math> for all <math>x \in M, t \in \R</math>.
<math>\frac{\partial u}{\partial t} = F(u)</math>
 
An ''initial value problem'' corresponding to this differential equation is a specification of <math>u(0,x)</math> for each <math>x \in M</math>.
 
The differential operator <math>F</math> is said to satisfy the '''scalar weak maximum principle''' if whenever <math>u</math> is a solution for which there are constants <math>C_1</math> and <math>C_2</math> such that <math>C_1 \le u(0,x) \le C_2</math> for all <math>x \in M</math>, then <math>C_1 \le u(t,x) \le C_2</math> for all <math>x \in M, t \in \R^+</math>.
 
In other words, any bounded set in which the range of <math>u(0,x)</math> lies also contains the image of <math>u(t,x)</math> for all <math>t</math>.
 
===Definition in terms of trajectory properties===
 
A differential operator <math>F</math> is said to satisfy the scalar weak maximum principle if the trajectories of the corresponding [[flow equation]] are all [[bound-narrowing trajectory|bound-narrowing]].
 
==Relation with other properties===
 
===One-sided maximum principles===
 
* The flow equation is said to satisfy a one-sided scalar weak maximum principle if the trajectories of the flow equation are only min-increasing

Latest revision as of 20:08, 18 May 2008

Template:Flow equation property

Definition

Basic definition

Let be a differential manifold and be a differential operator that acts on functions . Consider the flow equation associated with , namely the equation for given as:

An initial value problem corresponding to this differential equation is a specification of for each .

The differential operator is said to satisfy the scalar weak maximum principle if whenever is a solution for which there are constants and such that for all , then for all .

In other words, any bounded set in which the range of lies also contains the image of for all .

Definition in terms of trajectory properties

A differential operator is said to satisfy the scalar weak maximum principle if the trajectories of the corresponding flow equation are all bound-narrowing.

Relation with other properties=

One-sided maximum principles

  • The flow equation is said to satisfy a one-sided scalar weak maximum principle if the trajectories of the flow equation are only min-increasing