Curvature is tensorial: Difference between revisions
No edit summary |
|||
(4 intermediate revisions by the same user not shown) | |||
Line 23: | Line 23: | ||
| 2 || The Leibniz-like axiom that is part of the definition of a connection || For a function <math>f</math> and vector fields <math>A,B</math>, and a connection <math>\nabla</math>, we have <math>\nabla_A(fB) = (Af)(B) + f\nabla_A(B)</math> | | 2 || The Leibniz-like axiom that is part of the definition of a connection || For a function <math>f</math> and vector fields <math>A,B</math>, and a connection <math>\nabla</math>, we have <math>\nabla_A(fB) = (Af)(B) + f\nabla_A(B)</math> | ||
|- | |- | ||
| 3 || [[uses::Corollary of Leibniz rule for Lie bracket]] (in turn follows from [[uses:: | | 3 || [[uses::Corollary of Leibniz rule for Lie bracket]] (in turn follows from [[uses::Leibniz rule for derivations]]|| For a function <math>f</math> and vector fields <math>X,Y</math>: | ||
<br><math>\! f[X,Y] = [fX,Y] + (Yf)X</math><br><math>f[X,Y] = [X,fY] - (Xf)Y</math> | <br><math>\! f[X,Y] = [fX,Y] + (Yf)X</math><br><math>\! f[X,Y] = [X,fY] - (Xf)Y</math> | ||
|} | |} | ||
Line 50: | Line 50: | ||
| 1 || <math>f\nabla_X\nabla_Y - \nabla_Y (f \nabla_X) - \nabla_{[fX,Y]}</math> || Fact (1): <math>\nabla</math> is <math>C^\infty</math>-linear in its subscript argument. || <math>\nabla_{fX} \to f\nabla_X</math> | | 1 || <math>f\nabla_X\nabla_Y - \nabla_Y (f \nabla_X) - \nabla_{[fX,Y]}</math> || Fact (1): <math>\nabla</math> is <math>C^\infty</math>-linear in its subscript argument. || <math>\nabla_{fX} \to f\nabla_X</math> | ||
|- | |- | ||
| 2 || <math>f\nabla_X\nabla_Y - (Yf)\nabla_X - f \nabla_Y\nabla_X - \nabla_{[fX,Y]}</math> || Fact (2) | | 2 || <math>f\nabla_X\nabla_Y - (Yf)\nabla_X - f \nabla_Y\nabla_X - \nabla_{[fX,Y]}</math> || Fact (2) || <math>\nabla_Y(f \nabla_X) \to (Yf)\nabla_X + f\nabla_Y\nabla_X</math>. To understand this more clearly imagine an input <math>Z</math> to the whole expression, so that the rewrite becomes <math>\nabla_Y(f \nabla_X(Z)) \to (Yf)\nabla_X(Z) + f\nabla_Y\nabla_X(Z)</math>. In the notation of fact (3), <math>A = Y</math>, <math>f = f</math>, and <math>B = \nabla_X(Z)</math>. | ||
|- | |- | ||
| 3 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{(Yf)X} - \nabla_{[fX,Y]}</math> || Fact (1) | | 3 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{(Yf)X} - \nabla_{[fX,Y]}</math> || Fact (1) || <math>(Yf)\nabla_X \to \nabla_{(Yf)X}</math> | ||
|- | |- | ||
| 4 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{(Yf)X + [fX,Y]}</math> || <math>\nabla</math> is additive in its subscript argument || <math>\nabla_{(Yf)X} + \nabla_{[fX,Y]} = \nabla_{(Yf)X + [fX,Y]}</math> | | 4 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{(Yf)X + [fX,Y]}</math> || <math>\nabla</math> is additive in its subscript argument || <math>\nabla_{(Yf)X} + \nabla_{[fX,Y]} = \nabla_{(Yf)X + [fX,Y]}</math> | ||
|- | |- | ||
| 5 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]} | | 5 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{f[X,Y]}</math> || Fact (3) || <math>[fX,Y] + (Yf)X \to f[X,Y]</math> | ||
|- | |||
| 6 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]})</math> || Fact (1) || <math>\nabla_{f[X,Y]} \to f\nabla_{[X,Y]}</math> | |||
|} | |} | ||
Line 74: | Line 76: | ||
! Step no. !! Current status of left side !! Facts/properties used !! Specific rewrites | ! Step no. !! Current status of left side !! Facts/properties used !! Specific rewrites | ||
|- | |- | ||
| 1 || <math>\nabla_X(f\nabla_Y) - f\nabla_Y\nabla_X - \nabla_{[X,fY]}</math> || Fact (1) | | 1 || <math>\nabla_X(f\nabla_Y) - f\nabla_Y\nabla_X - \nabla_{[X,fY]}</math> || Fact (1) || <math>\nabla_{fY} \to f\nabla_Y</math>. | ||
|- | |- | ||
| 2 || <math>(Xf)\nabla_Y + f(\nabla_X\nabla_Y) - f\nabla_Y\nabla_X - \nabla_{[X,fY]}</math> || Fact (2) | | 2 || <math>(Xf)\nabla_Y + f(\nabla_X\nabla_Y) - f\nabla_Y\nabla_X - \nabla_{[X,fY]}</math> || Fact (2) || <math>\nabla_X(f\nabla_Y) \to (Xf)\nabla_Y + f(\nabla_X\nabla_Y)</math>. To make this more concrete, imagine an input <math>Z</math>. Then, the rewrite becomes <math>\nabla_X(f\nabla_Y(Z)) \to (Xf)\nabla_Y(X) + f(\nabla_X\nabla_Y(Z))</math>. This comes setting <math>A = X</math>, <math>f = f</math>, <math>B = \nabla_YZ</math> in Fact (3). | ||
|- | |- | ||
| 3 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{[X,fY]} + \nabla_{(Xf)Y}</math> || | | 3 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{[X,fY]} + \nabla_{(Xf)Y}</math> || Fact (1) || <math>(Xf)\nabla_Y \to \nabla_{(Xf)Y}</math> | ||
|- | |- | ||
| 4 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{[X,fY] - (Xf)Y}</math> || <math>\nabla</math> is additive in its subscript argument. || <math>\nabla_{[X,fY]} - \nabla_{(Xf)Y} \to \nabla_{[X,fY] - (Xf)Y}</math>. | | 4 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{[X,fY] - (Xf)Y}</math> || <math>\nabla</math> is additive in its subscript argument. || <math>\nabla_{[X,fY]} - \nabla_{(Xf)Y} \to \nabla_{[X,fY] - (Xf)Y}</math>. | ||
|- | |- | ||
| 5 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]}</math> || Fact (3) || <math>[X,fY] - (Xf)Y \to f[X,Y]</math> | | 5 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{f[X,Y]}</math> || Fact (3) || <math>[X,fY] - (Xf)Y \to f[X,Y]</math> | ||
|- | |||
| 6 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]})</math> || Fact (1) || <math>\nabla_{f[X,Y]} \to f\nabla_{[X,Y]}</math> | |||
|} | |} | ||
===Tensoriality in the third variable=== | ===Tensoriality in the third variable=== | ||
'''Given''': A <math>C^\infty</math>-function <math>f:M \to \R</math>. | |||
<math>\! R(X,Y) (fZ) = f R(X,Y) Z</math> | '''To prove''': <math>\! R(X,Y) (fZ) = f R(X,Y) Z</math>. More explicitly, <math>\! \nabla_X\nabla_Y(fZ) - \nabla_Y\nabla_X(fZ) - \nabla_{[X,Y]}(fZ) = f (\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]})Z + ((XY - YX - [X,Y])f)Z</math>. | ||
We start out with the left side: | We start out with the left side: | ||
Line 95: | Line 99: | ||
<math>\nabla_X\nabla_Y(fZ) - \nabla_Y\nabla_X(fZ) - \nabla_{[X,Y]}(fZ)</math> | <math>\nabla_X\nabla_Y(fZ) - \nabla_Y\nabla_X(fZ) - \nabla_{[X,Y]}(fZ)</math> | ||
Each step below is obtained from the previous one via some manipulation explained along side. | |||
<math>\nabla_X( (Yf)(Z) + f \nabla_YZ) - \nabla_Y ((Xf)Z + f \nabla_XZ) - f \nabla_{[X,Y]}Z - ([X,Y]f) Z</math> | {| class="sortable" border="1" | ||
! Step no. !! Current status of left side !! Facts/properties used !! Specific rewrites | |||
|- | |||
| 1 || <math>\! \nabla_X( (Yf)(Z) + f \nabla_YZ) - \nabla_Y ((Xf)Z + f \nabla_XZ) - f \nabla_{[X,Y]}Z - ([X,Y]f) Z</math> || Fact (2) || <math>\nabla_Y(fZ) \to (Yf)(Z) + f\nabla_YZ</math> and <math>\nabla_X(fZ) \to (Xf)Z + f\nabla_XZ</math> | |||
<math>(XYf)(Z) + (Yf) \nabla_XZ + (Xf) \nabla_YZ + f \nabla_X\nabla_YZ - (YXf)Z - (Xf) \nabla_YZ - (Yf) \nabla_XZ -f \nabla_Y\nabla_XZ - f \nabla_{[X,Y]}Z - ([X,Y]f) Z</math> | |- | ||
| 2 || <math>\! (XYf)(Z) + (Yf) \nabla_XZ + (Xf) \nabla_YZ + f \nabla_X\nabla_YZ - (YXf)Z - (Xf) \nabla_YZ - (Yf) \nabla_XZ -f \nabla_Y\nabla_XZ - f \nabla_{[X,Y]}Z - ([X,Y]f) Z</math> || Fact (2) || <math>\nabla_X((Yf)Z) \to X((Yf)Z) + (Yf)\nabla_XZ</math>, etc. | |||
|- | |||
| 3 || <math>f (\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]})Z + ((XY - YX - [X,Y])f)Z</math> || -- || cancellations | |||
<math>f (\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]})Z + ((XY - YX - [X,Y])f)Z</math> | |- | ||
| 4 || <math>f (\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]})Z + ((XY - YX - [X,Y])f)Z</math>|| use <math>[X,Y] = XY - YX</math>, definition || cancellation | |||
|} | |||
<math> |
Latest revision as of 17:36, 6 January 2012
This article gives the statement, and possibly proof, that a map constructed in a certain way is tensorial
View other such statements
Statement
Let be a connection on a vector bundle over a differential manifold . The Riemann curvature tensor of is given as a map defined by:
We claim that is a tensorial map in each of the variables .
Related facts
- Curvature is antisymmetric in first two variables
- Curvature is antisymmetric in last two variables
- Curvature is symmetric in the pairs of first and last two variables
Facts used
Fact no. | Name | Statement with symbols |
---|---|---|
1 | Any connection is -linear in its subscript argument | for any -function and vector field . |
2 | The Leibniz-like axiom that is part of the definition of a connection | For a function and vector fields , and a connection , we have |
3 | Corollary of Leibniz rule for Lie bracket (in turn follows from Leibniz rule for derivations | For a function and vector fields :
|
Proof
To prove tensoriality in a variable, it suffices to show -linearity in that variable. This is because linearity in -functions guarantees linearity in a function that is 1 at exactly one point, and zero at others.
The proofs for and are analogous, and rely on manipulation of the Lie bracket and the property of a connection being in the subscript vector. These proofs do not involve any explicit use of . The proof for relies simply on repeated application of the product rule, and the fact that .
Tensoriality in the first variable
Given: is a -function.
To prove: , or more explicitly,
We start out with the left side:
Each step below is obtained from the previous one via some manipulation explained along side.
Step no. | Current status of left side | Facts/properties used | Specific rewrites |
---|---|---|---|
1 | Fact (1): is -linear in its subscript argument. | ||
2 | Fact (2) | . To understand this more clearly imagine an input to the whole expression, so that the rewrite becomes . In the notation of fact (3), , , and . | |
3 | Fact (1) | ||
4 | is additive in its subscript argument | ||
5 | Fact (3) | ||
6 | Fact (1) |
Tensoriality in the second variable
Given: is a -function.
To prove: , or more explicitly, .
We start out with the left side:
Each step below is obtained from the previous one via some manipulation explained along side.
Step no. | Current status of left side | Facts/properties used | Specific rewrites |
---|---|---|---|
1 | Fact (1) | . | |
2 | Fact (2) | . To make this more concrete, imagine an input . Then, the rewrite becomes . This comes setting , , in Fact (3). | |
3 | Fact (1) | ||
4 | is additive in its subscript argument. | . | |
5 | Fact (3) | ||
6 | Fact (1) |
Tensoriality in the third variable
Given: A -function .
To prove: . More explicitly, .
We start out with the left side:
Each step below is obtained from the previous one via some manipulation explained along side.
Step no. | Current status of left side | Facts/properties used | Specific rewrites |
---|---|---|---|
1 | Fact (2) | and | |
2 | Fact (2) | , etc. | |
3 | -- | cancellations | |
4 | use , definition | cancellation |