Curvature is tensorial: Difference between revisions

From Diffgeom
 
(24 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{tensoriality fact}}
==Statement==
==Statement==


Let <math>\nabla</math> be a [[connection]] on a [[vector bundle]] <math>E</math> over a [[differential manifold]] <math>M</math>. The '''Riemann curvature tensor''' of <math>\nabla</math> is given as a map <math>\Gamma(TM) \otimes \Gamma(TM) \otimes \Gamma(E) \to \Gamma(E)</math> defined by:
Let <math>\nabla</math> be a [[connection]] on a [[vector bundle]] <math>E</math> over a [[differential manifold]] <math>M</math>. The [[fact about::Riemann curvature tensor]] of <math>\nabla</math> is given as a map <math>\Gamma(TM) \otimes \Gamma(TM) \otimes \Gamma(E) \to \Gamma(E)</math> defined by:


<math>R(X,Y)Z = \nabla_X\nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z</math>
<math>R(X,Y)Z = \nabla_X\nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z</math>


We claim that <math>R</math> is indeed a tensor, viz it is ''tensorial'' in each of <math>X,Y,Z</math>.
We claim that <math>R</math> is a [[fact about::tensorial map]] in each of the variables <math>X,Y,Z</math>.
 
==Related facts==
 
* [[Curvature is antisymmetric in first two variables]]
* [[Curvature is antisymmetric in last two variables]]
* [[Curvature is symmetric in the pairs of first and last two variables]]
 
==Facts used==
 
{| class="sortable" border="1"
! Fact no. !! Name !! Statement with symbols
|-
| 1 || Any connection is <math>C^\infty</math>-linear in its subscript argument || <math>\nabla_{fA} = f\nabla_A</math> for any <math>C^\infty</math>-function <math>f</math> and vector field <math>A</math>.
|-
| 2 || The Leibniz-like axiom that is part of the definition of a connection || For a function <math>f</math> and vector fields <math>A,B</math>, and a connection <math>\nabla</math>, we have <math>\nabla_A(fB) = (Af)(B) + f\nabla_A(B)</math>
|-
| 3 || [[uses::Corollary of Leibniz rule for Lie bracket]] (in turn follows from [[uses::Leibniz rule for derivations]]|| For a function <math>f</math> and vector fields <math>X,Y</math>:
<br><math>\! f[X,Y] = [fX,Y] + (Yf)X</math><br><math>\! f[X,Y] = [X,fY] - (Xf)Y</math>
|}


==Proof==
==Proof==
Line 15: Line 35:
===Tensoriality in the first variable===
===Tensoriality in the first variable===


Let <math>f:M \to \R</math> be a scalar function. We will show that:
'''Given''': <math>f:M \to \R</math> is a <math>C^\infty</math>-function.


<math>R(fX,Y) = f R(X,Y)</math>
'''To prove''': <math>\! R(fX,Y) = f R(X,Y)</math>, or more explicitly, <math>\! \nabla_{fX}\nabla_Y - \nabla_Y \nabla_{fX} - \nabla_{[fX,Y]} = f(\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]}</math>


We start out with the left side:
We start out with the left side:
Line 23: Line 43:
<math>\nabla_{fX}\nabla_Y - \nabla_Y \nabla_{fX} - \nabla_{[fX,Y]}</math>
<math>\nabla_{fX}\nabla_Y - \nabla_Y \nabla_{fX} - \nabla_{[fX,Y]}</math>


Now by the definition of a [[connection]], <math>\nabla</math> is <math>C^\infty</math>-linear in its subscript argument. Thus, the above expression can be written as:
Each step below is obtained from the previous one via some manipulation explained along side.
 
<math>f\nabla_X\nabla_Y - \nabla_Y (f \nabla_X) - \nabla_{[fX,Y]}</math>
 
Now applying the Leibniz rule for connections, we get:
 
<math>f\nabla_X\nabla_Y - (Yf)\nabla_X - f \nabla_Y\nabla_X - \nabla_{[fX,Y]}</math>


We can rewrite <math>(Yf)\nabla_X = \nabla_{(Yf)X}</math> and we then get:
{| class="sortable" border="1"
 
! Step no. !! Current status of left side !! Facts/properties used !! Specific rewrites
<math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{(Yf)X + [fX,Y]}</math>
|-
 
| 1 || <math>f\nabla_X\nabla_Y - \nabla_Y (f \nabla_X) - \nabla_{[fX,Y]}</math> || Fact (1): <math>\nabla</math> is <math>C^\infty</math>-linear in its subscript argument. || <math>\nabla_{fX} \to f\nabla_X</math>
Now it remains to simplify <math>(Yf)X + [fX,Y]</math>. Observe that for any scalar function <math>h</math>:
|-
 
| 2 || <math>f\nabla_X\nabla_Y - (Yf)\nabla_X - f \nabla_Y\nabla_X - \nabla_{[fX,Y]}</math> || Fact (2) || <math>\nabla_Y(f \nabla_X) \to (Yf)\nabla_X + f\nabla_Y\nabla_X</math>. To understand this more clearly imagine an input <math>Z</math> to the whole expression, so that the rewrite becomes <math>\nabla_Y(f \nabla_X(Z)) \to (Yf)\nabla_X(Z) + f\nabla_Y\nabla_X(Z)</math>. In the notation of fact (3), <math>A = Y</math>, <math>f = f</math>, and <math>B = \nabla_X(Z)</math>.
<math>[fX,Y](h) = (fX)(Yh) - Y((fX)h) = (fX)(Yh) - (Yf)(Xh) - (fY(Xh) = f([X,Y]h) - (Yf)(Xh)</math>
|-
 
| 3 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{(Yf)X} - \nabla_{[fX,Y]}</math> || Fact (1) || <math>(Yf)\nabla_X \to \nabla_{(Yf)X}</math>
This tells us that:
|-
 
| 4 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{(Yf)X + [fX,Y]}</math> || <math>\nabla</math> is additive in its subscript argument || <math>\nabla_{(Yf)X} + \nabla_{[fX,Y]} = \nabla_{(Yf)X + [fX,Y]}</math>
<math>(Yf)X + [fX,Y] = f[X,Y]</math>
|-
 
| 5 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{f[X,Y]}</math> || Fact (3) || <math>[fX,Y] + (Yf)X \to f[X,Y]</math>
which, substituted back, gives:
|-
 
| 6 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]})</math> || Fact (1) || <math>\nabla_{f[X,Y]} \to f\nabla_{[X,Y]}</math>
<math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]}</math>
|}


===Tensoriality in the second variable===
===Tensoriality in the second variable===


Let <math>f:M \to \R</math> be a scalar function. We will show that:
'''Given''': <math>f:M \to \R</math> is a <math>C^\infty</math>-function.


<math>R(X,fY) = f R(X,Y)</math>
'''To prove''': <math>\! R(X,fY) = f R(X,Y)</math>, or more explicitly, <math>\nabla_X\nabla_{fY} - \nabla_{fY}\nabla_X - \nabla_{[X,fY]} = f (\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]}</math>.


We start out with the left side:
We start out with the left side:
Line 57: Line 71:
<math>\nabla_X\nabla_{fY} - \nabla_{fY}\nabla_X - \nabla_{[X,fY]}</math>
<math>\nabla_X\nabla_{fY} - \nabla_{fY}\nabla_X - \nabla_{[X,fY]}</math>


Applying the Leibniz rule and the property of a connection being <math>C^\infty</math> in its subscript variable yields:
Each step below is obtained from the previous one via some manipulation explained along side.


<math>(Xf)\nabla_Y + f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{[X,fY]}</math>
{| class="sortable" border="1"
 
! Step no. !! Current status of left side !! Facts/properties used !! Specific rewrites
which simplifies to:
|-
 
| 1 || <math>\nabla_X(f\nabla_Y) - f\nabla_Y\nabla_X - \nabla_{[X,fY]}</math> || Fact (1) || <math>\nabla_{fY} \to f\nabla_Y</math>.
<math>f(\nabla_X\nabla_y - \nabla_Y\nabla_X) - \nabla_{[X,fY] - (Xf)Y}</math>
|-
 
| 2 || <math>(Xf)\nabla_Y + f(\nabla_X\nabla_Y) - f\nabla_Y\nabla_X - \nabla_{[X,fY]}</math> || Fact (2) || <math>\nabla_X(f\nabla_Y) \to (Xf)\nabla_Y + f(\nabla_X\nabla_Y)</math>. To make this more concrete, imagine an input <math>Z</math>. Then, the rewrite becomes <math>\nabla_X(f\nabla_Y(Z)) \to (Xf)\nabla_Y(X) + f(\nabla_X\nabla_Y(Z))</math>. This comes setting <math>A = X</math>, <math>f = f</math>, <math>B = \nabla_YZ</math> in Fact (3).
We now use the fact that:
|-
 
| 3 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{[X,fY]} + \nabla_{(Xf)Y}</math> || Fact (1) || <math>(Xf)\nabla_Y \to \nabla_{(Xf)Y}</math>
<math>[X,fY](h) = X(fY(h)) - (fY)(Xh) = (Xf)(Yh) + f(XYh) - f(YX)h = (Xf)(Yh) + f([X,Y]h)</math>
|-
 
| 4 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{[X,fY] - (Xf)Y}</math> || <math>\nabla</math> is additive in its subscript argument. || <math>\nabla_{[X,fY]} - \nabla_{(Xf)Y} \to \nabla_{[X,fY] - (Xf)Y}</math>.
which tells us that:
|-
 
| 5 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{f[X,Y]}</math> || Fact (3) || <math>[X,fY] - (Xf)Y \to f[X,Y]</math>
<math>f[X,Y] = (Xf)Y - [X,fY]</math>
|-
 
| 6 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]})</math> || Fact (1) || <math>\nabla_{f[X,Y]} \to f\nabla_{[X,Y]}</math>
substituting this gives:
|}
 
<math>f (\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]}</math>
 
which is <math>f R(X,Y)</math>


===Tensoriality in the third variable===
===Tensoriality in the third variable===


Let <math>f: M \to \R</math> be a scalar function. We will show that:
'''Given''': A <math>C^\infty</math>-function <math>f:M \to \R</math>.


<math>R(X,Y) (fZ) = f R(X,Y) Z</math>
'''To prove''': <math>\! R(X,Y) (fZ) = f R(X,Y) Z</math>. More explicitly, <math>\! \nabla_X\nabla_Y(fZ) - \nabla_Y\nabla_X(fZ) - \nabla_{[X,Y]}(fZ)  = f (\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]})Z + ((XY - YX - [X,Y])f)Z</math>.


We start out with the left side:
We start out with the left side:
Line 89: Line 99:
<math>\nabla_X\nabla_Y(fZ) - \nabla_Y\nabla_X(fZ) - \nabla_{[X,Y]}(fZ)</math>
<math>\nabla_X\nabla_Y(fZ) - \nabla_Y\nabla_X(fZ) - \nabla_{[X,Y]}(fZ)</math>


Now we apply the Leibniz rule for connnections on each term:
Each step below is obtained from the previous one via some manipulation explained along side.
 
<math>\nabla_X( (Yf)(Z) + f \nabla_YZ) - \nabla_Y ((Xf)Z + f \nabla_XZ) - f \nabla_{[X,Y]}Z - ([X,Y]f) Z</math>
 
We again apply the Leibniz rule to the first two term groups:
 
<math>(XYf)(Z) + (Yf) \nabla_XZ + (Xf) \nabla_YZ + f \nabla_X\nabla_YZ - (YXf)Z - (Xf) \nabla_YZ - (Yf) \nabla_XZ -f \nabla_Y\nabla_XZ - f \nabla_{[X,Y]}Z - ([X,Y]f) Z</math>
 
After cancellations we are left with the following six terms:
 
<math>f (\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]})Z + ((XY - YX - [X,Y])f)Z</math>
 
But since <math>[X,Y] = XY - YX</math>, the last three terms vanish, and we are left with:


<math>f R(X,Y)Z</math>
{| class="sortable" border="1"
! Step no. !! Current status of left side !! Facts/properties used !! Specific rewrites
|-
| 1 || <math>\! \nabla_X( (Yf)(Z) + f \nabla_YZ) - \nabla_Y ((Xf)Z + f \nabla_XZ) - f \nabla_{[X,Y]}Z - ([X,Y]f) Z</math> || Fact (2) || <math>\nabla_Y(fZ) \to (Yf)(Z) + f\nabla_YZ</math> and <math>\nabla_X(fZ) \to (Xf)Z + f\nabla_XZ</math>
|-
| 2 || <math>\! (XYf)(Z) + (Yf) \nabla_XZ + (Xf) \nabla_YZ + f \nabla_X\nabla_YZ - (YXf)Z - (Xf) \nabla_YZ - (Yf) \nabla_XZ -f \nabla_Y\nabla_XZ - f \nabla_{[X,Y]}Z - ([X,Y]f) Z</math> || Fact (2) || <math>\nabla_X((Yf)Z) \to X((Yf)Z) + (Yf)\nabla_XZ</math>, etc.
|-
| 3 || <math>f (\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]})Z + ((XY - YX - [X,Y])f)Z</math> || -- || cancellations
|-
| 4 || <math>f (\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]})Z + ((XY - YX - [X,Y])f)Z</math>|| use <math>[X,Y] = XY - YX</math>, definition || cancellation
|}

Latest revision as of 17:36, 6 January 2012

This article gives the statement, and possibly proof, that a map constructed in a certain way is tensorial
View other such statements

Statement

Let be a connection on a vector bundle over a differential manifold . The Riemann curvature tensor of is given as a map defined by:

We claim that is a tensorial map in each of the variables .

Related facts

Facts used

Fact no. Name Statement with symbols
1 Any connection is -linear in its subscript argument for any -function and vector field .
2 The Leibniz-like axiom that is part of the definition of a connection For a function and vector fields , and a connection , we have
3 Corollary of Leibniz rule for Lie bracket (in turn follows from Leibniz rule for derivations For a function and vector fields :



Proof

To prove tensoriality in a variable, it suffices to show -linearity in that variable. This is because linearity in -functions guarantees linearity in a function that is 1 at exactly one point, and zero at others.

The proofs for and are analogous, and rely on manipulation of the Lie bracket and the property of a connection being in the subscript vector. These proofs do not involve any explicit use of . The proof for relies simply on repeated application of the product rule, and the fact that .

Tensoriality in the first variable

Given: is a -function.

To prove: , or more explicitly,

We start out with the left side:

Each step below is obtained from the previous one via some manipulation explained along side.

Step no. Current status of left side Facts/properties used Specific rewrites
1 Fact (1): is -linear in its subscript argument.
2 Fact (2) . To understand this more clearly imagine an input to the whole expression, so that the rewrite becomes . In the notation of fact (3), , , and .
3 Fact (1)
4 is additive in its subscript argument
5 Fact (3)
6 Fact (1)

Tensoriality in the second variable

Given: is a -function.

To prove: , or more explicitly, .

We start out with the left side:

Each step below is obtained from the previous one via some manipulation explained along side.

Step no. Current status of left side Facts/properties used Specific rewrites
1 Fact (1) .
2 Fact (2) . To make this more concrete, imagine an input . Then, the rewrite becomes . This comes setting , , in Fact (3).
3 Fact (1)
4 is additive in its subscript argument. .
5 Fact (3)
6 Fact (1)

Tensoriality in the third variable

Given: A -function .

To prove: . More explicitly, .

We start out with the left side:

Each step below is obtained from the previous one via some manipulation explained along side.

Step no. Current status of left side Facts/properties used Specific rewrites
1 Fact (2) and
2 Fact (2) , etc.
3 -- cancellations
4 use , definition cancellation