Max-decreasing trajectory: Difference between revisions

From Diffgeom
No edit summary
No edit summary
Line 14: Line 14:
<math>t \mapsto \sup_{x \in M} u(t,x)</math>
<math>t \mapsto \sup_{x \in M} u(t,x)</math>


is a monotone decreasing function.
is a monotone decreasing function. (The function defined above is termed the [[timewise-max function]] for <math>u</math>).


The corresponding notion is of a '''min-increasing trajectory''' -- viz a trajectory where the minimum (or infimum) keeps increasing.
The corresponding notion is of a '''min-increasing trajectory''' -- viz a trajectory where the minimum (or infimum) keeps increasing.

Revision as of 10:54, 8 April 2007

This article defines a property that can be evaluated for a trajectory on the space of functions on a manifold

Definition

Let be a manifold and be a function , where:

  • denotes the time parameter, and varies in
  • denotes the spatial parameter, and varies in

In other words, is a trajectory (or path) in the space of all functions from to .

Then, is said to be max-decreasing if the function:

is a monotone decreasing function. (The function defined above is termed the timewise-max function for ).

The corresponding notion is of a min-increasing trajectory -- viz a trajectory where the minimum (or infimum) keeps increasing.