Ricci curvature tensor of Levi-Civita connection: Difference between revisions

From Diffgeom
No edit summary
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Definition==
==Definition==


Let <math>M</math> be a [[differential manifold]] and <math>g</math> be a [[Riemannian metric]] or [[pseudo-Riemannian metric]] on <math>M</math>. Let <math>\nabla</math> be the [[Levi-Civita connection]] associated with <math>g</math>. The '''Ricci curvature tensor'' of <math>M</math> is defined as the [[Ricci curvature tensor]] of the Levi-Civita connection.
Let <math>M</math> be a [[differential manifold]] and <math>g</math> be a [[defining ingredient::Riemannian metric]] or [[defining ingredient::pseudo-Riemannian metric]] on <math>M</math>. Let <math>\nabla</math> be the [[defining ingredient::Levi-Civita connection]] associated with <math>g</math>. The '''Ricci curvature tensor''' of <math>M</math> is defined as the [[defining ingredient::Ricci curvature tensor]] of the Levi-Civita connection.


Explicitly, if <math>R</math> is the Riemann curvature tensor of the Levi-Civita connection:
Explicitly, if <math>R</math> is the Riemann curvature tensor of the Levi-Civita connection:


<math>Ric(X,Y) = Tr(Z \mapsto R(X,Z)Y)</math>
<math>\operatorname{Ric}(X,Y) = -Tr(Z \mapsto R(X,Z)Y)</math>


In the particular case of a Riemannian metric, we can choose an orthonormal basis <math>e_i</math> on each tangent space. For a particular tangent space, if the orthonormal basis is <math>e_i</math>, the Ricci curvature tensor evaluated at a pair of vectors <math>X,Y</math> is:
In the particular case of a Riemannian metric, we can choose an orthonormal basis <math>e_i</math> on each tangent space. For a particular tangent space, if the orthonormal basis is <math>e_i</math>, the Ricci curvature tensor evaluated at a pair of vectors <math>X,Y</math> is:


<math>Ric(X,Y) = \sum_{i=1}^n g(R(X,e_i)Y,e_i)</math>
<math>\operatorname{Ric}(X,Y) = \sum_{i=1}^n g(R(X,e_i)Y,e_i)</math>


Or is the language of <math>R</math> as a <math>(0,4)</math>-tensor:
Or is the language of <math>R</math> as a <math>(0,4)</math>-tensor:


<math>Ric(X,Y) = \sum_{i=1}^n R(X,e_i,Y,e_i)</math>
<math>\operatorname{Ric}(X,Y) = \sum_{i=1}^n R(X,e_i,Y,e_i)</math>


==Related notions==
==Related notions==

Latest revision as of 02:28, 24 July 2009

Definition

Let M be a differential manifold and g be a Riemannian metric or pseudo-Riemannian metric on M. Let be the Levi-Civita connection associated with g. The Ricci curvature tensor of M is defined as the Ricci curvature tensor of the Levi-Civita connection.

Explicitly, if R is the Riemann curvature tensor of the Levi-Civita connection:

Ric(X,Y)=Tr(ZR(X,Z)Y)

In the particular case of a Riemannian metric, we can choose an orthonormal basis ei on each tangent space. For a particular tangent space, if the orthonormal basis is ei, the Ricci curvature tensor evaluated at a pair of vectors X,Y is:

Ric(X,Y)=i=1ng(R(X,ei)Y,ei)

Or is the language of R as a (0,4)-tensor:

Ric(X,Y)=i=1nR(X,ei,Y,ei)

Related notions

  • Ricci curvature in a direction is the Ricci curvature tensor Ric(X,X) where X is a unit vector in that direction

Facts

Symmetry

We have:

Ric(X,Y)=Ric(Y,X)

This follows from the fact that the Riemann curvature tensor is symmetric in the pair of the first two and last two variables. For full proof, refer: Symmetry of Riemann curvature tensor in variable pairs