Curvature is antisymmetric in last two variables: Difference between revisions

From Diffgeom
(Created page with '==Statement== Suppose <math>M</math> is a differential manifold and <math>g</math> is a fact about::Riemannian metric or fact about::pseudo-Riemannian metric and <ma…')
 
No edit summary
Line 7: Line 7:
Then:
Then:


<math>\! R(X,Y,Z,W) = R(X,Y,W,Z)</math>.
<math>\! R(X,Y,Z,W) = -R(X,Y,W,Z)</math>.


==Facts used==
==Proof==
 
We consider the expression <math>R(X,Y,Z,W) + R(X,Y,W,Z)</math>:
 
<math>g(\nabla_X \circ \nabla_Y(Z) - \nabla_Y \circ \nabla_X(Z) - \nabla_{[X,Y]}(Z),W) - g(\nabla_X \circ \nabla_Y(W) - \nabla_Y \circ \nabla_X(W) - \nabla_{[X,Y]}(W),Z)</math>
 
By the bilinearity of <math>g</math>, this simplifies to:


# [[uses::First Bianchi identity]]: This states that if <math>R</math> is a [[torsion-free linear connection]], then:
<math>g(\nabla_X \circ \nabla_Y(Z),W) - g(\nabla_Y\circ \nabla_X(Z),W) - g(\nabla_{[X,Y]}(Z),W) + g(\nabla_X \circ \nabla_Y(W),Z) - g(\nabla_Y\circ \nabla_X(W),Z) - g(\nabla_{[X,Y]}(W),Z)</math>


<math>R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0</math>.
To prove that this is zero, it thus suffices to show that:


==Proof==
<math>g(\nabla_{[X,Y]}(Z),W) + g(\nabla_{[X,Y]}(W),Z) = g(\nabla_X \circ \nabla_Y(Z),W) + g(\nabla_X \circ \nabla_Y(W),Z) - g(\nabla_Y \circ \nabla_X(Z),W) - g(\nabla_Y \circ \nabla_X(W), Z) \qquad (\dagger)</math>.
 
We now show <math>\dagger</math>. Since <math>g</math> is a [[metric connection]], the left side simplifies to:
 
<math>g(\nabla_{[X,Y]}(Z),W) + g(\nabla_{[X,Y]}(W),Z) = [X,Y]g(Z,W) = XYg(Z,W) - YXg(Z,W) \qquad (\dagger\dagger)</math>.
 
Simplifying each of the two terms on the right side of <math>\tag{\dagger\dagger}</math>, we get:
 
<math>XYg(Z,W) = Xg(\nabla_Y(Z),W) + Xg(Z,\nabla_Y(W)) = g(\nabla_X \circ \nabla_Y(Z),W) + g(\nabla_Y(Z),\nabla_X(W)) + g(Z,\nabla_X \circ \nabla_Y(W)) + g(\nabla_X(Z),\nabla_Y(W)) \qquad (1)</math>.
 
And:
 
<math>YXg(Z,W) = Yg(\nabla_X(Z),W) + Yg(Z,nabla_X(W)) = g(\nabla_Y \circ \nabla_X(Z),W) + g(\nabla_X(Z),\nabla_Y(W)) + g(\nabla_Y(Z),\nabla_X(W)) + g(Z,\nabla_Y \circ \nabla_X(W)) \qquad (2)</math>.


{{fillin}}
Substituting (1) and (2) in <math>(\dagger\dagger)</math> yields <math>(\dagger)</math>.

Revision as of 01:50, 24 July 2009

Statement

Suppose M is a differential manifold and g is a Riemannian metric or pseudo-Riemannian metric and is the Levi-Civita connection for g. Consider the Riemann curvature tensor R of . In other words, R is the Riemann curvature tensor of the Levi-Civita connection for g. We can treat R as a (0,4)-tensor:

R(X,Y,Z,W)=g(R(X,Y)Z,W).

Then:

R(X,Y,Z,W)=R(X,Y,W,Z).

Proof

We consider the expression R(X,Y,Z,W)+R(X,Y,W,Z):

g(XY(Z)YX(Z)[X,Y](Z),W)g(XY(W)YX(W)[X,Y](W),Z)

By the bilinearity of g, this simplifies to:

g(XY(Z),W)g(YX(Z),W)g([X,Y](Z),W)+g(XY(W),Z)g(YX(W),Z)g([X,Y](W),Z)

To prove that this is zero, it thus suffices to show that:

g([X,Y](Z),W)+g([X,Y](W),Z)=g(XY(Z),W)+g(XY(W),Z)g(YX(Z),W)g(YX(W),Z)().

We now show . Since g is a metric connection, the left side simplifies to:

g([X,Y](Z),W)+g([X,Y](W),Z)=[X,Y]g(Z,W)=XYg(Z,W)YXg(Z,W)().

Simplifying each of the two terms on the right side of Failed to parse (unknown function "\tag"): {\displaystyle \tag{\dagger\dagger}} , we get:

XYg(Z,W)=Xg(Y(Z),W)+Xg(Z,Y(W))=g(XY(Z),W)+g(Y(Z),X(W))+g(Z,XY(W))+g(X(Z),Y(W))(1).

And:

YXg(Z,W)=Yg(X(Z),W)+Yg(Z,nablaX(W))=g(YX(Z),W)+g(X(Z),Y(W))+g(Y(Z),X(W))+g(Z,YX(W))(2).

Substituting (1) and (2) in () yields ().