Surface of revolution: Difference between revisions
No edit summary |
|||
| Line 36: | Line 36: | ||
{{fillin}} | {{fillin}} | ||
==External links== | |||
===Definition links=== | |||
* {{mathworld|SurfaceofRevolution}} | |||
* {{wp|Surface_of_revolution}} | |||
Revision as of 11:59, 18 June 2007
This article defines a property that makes sense for a surface embedded in , viz three-dimensional Euclidean space. The property is invariant under orthogonal transformations and scaling, i.e., under all similarity transformations.
View other such properties
Definition
A surface of revolution is a surface in <math?\R^3</math> obtained by revolving, about the -axis, a curve in the -plane.
Examples
For a full list of surfaces of revolution, see Category:Surfaces of revolution. Particular examples are:
- Sphere which is obtained from an upper semicircle
- Cone which is obtained from a ray terminating at the -axis
- Double cone which is obtained from a pair of rays terminating at the same point of the -axis, and which have slopes of equal magnitude but opposite sign
- Cylinder which is obtained from a line parallel to the -axis
Terminology associated with surfaces of revolution
Sectional planes
These are planes perpendicular to the -axis
The intersection of the surface of revolution with any sectional plane is a union of concentric circles, centered at the -axis
Transverse planes
These are planes containing the -axis.
The intersection of the surface of revolution with any transverse plane is the original curve whose revolution gave rise to the surface of revolution.
Geometric constructions
Tangent plane and principal directions
The tangent plane at each point has two directions: one, the tangent to the planar curve when taken in the transverse plane, and the other, the tangent to the circle when taken in the sectional plane. The two directions are mutually perpendicular. Furtherm these two directions are the principal directions. The principal curvature in the transversal plane equals the curvature of the planar curve, while the principal curvature in the sectional plane equals the curvature of the circle.
Both of these numbers can easily be described in terms of the equation of the planar curve.
Fill this in later