Curvature is antisymmetric in last two variables: Difference between revisions

From Diffgeom
Line 33: Line 33:
And:
And:


<math>YXg(Z,W) = Yg(\nabla_X(Z),W) + Yg(Z,nabla_X(W)) = g(\nabla_Y \circ \nabla_X(Z),W) + g(\nabla_X(Z),\nabla_Y(W)) + g(\nabla_Y(Z),\nabla_X(W)) + g(Z,\nabla_Y \circ \nabla_X(W)) \qquad (2)</math>.
<math>YXg(Z,W) = Yg(\nabla_X(Z),W) + Yg(Z,\nabla_X(W)) = g(\nabla_Y \circ \nabla_X(Z),W) + g(\nabla_X(Z),\nabla_Y(W)) + g(\nabla_Y(Z),\nabla_X(W)) + g(Z,\nabla_Y \circ \nabla_X(W)) \qquad (2)</math>.


Substituting (1) and (2) in <math>(\dagger\dagger)</math> yields <math>(\dagger)</math>.
Substituting (1) and (2) in <math>(\dagger\dagger)</math> yields <math>(\dagger)</math>.

Revision as of 01:51, 24 July 2009

Statement

Suppose is a differential manifold and is a Riemannian metric or pseudo-Riemannian metric and is the Levi-Civita connection for . Consider the Riemann curvature tensor of . In other words, is the Riemann curvature tensor of the Levi-Civita connection for . We can treat as a -tensor:

.

Then:

.

Proof

We consider the expression :

By the bilinearity of , this simplifies to:

To prove that this is zero, it thus suffices to show that:

.

We now show . Since is a metric connection, the left side simplifies to:

.

Simplifying each of the two terms on the right side of , we get:

.

And:

.

Substituting (1) and (2) in yields .