|
|
Line 56: |
Line 56: |
| | 4 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{(Yf)X + [fX,Y]}</math> || <math>\nabla</math> is additive in its subscript argument || <math>\nabla_{(Yf)X} + \nabla_{[fX,Y]} = \nabla_{(Yf)X + [fX,Y]}</math> | | | 4 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{(Yf)X + [fX,Y]}</math> || <math>\nabla</math> is additive in its subscript argument || <math>\nabla_{(Yf)X} + \nabla_{[fX,Y]} = \nabla_{(Yf)X + [fX,Y]}</math> |
| |- | | |- |
| | 5 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]})</math> || Fact (3) || <math>[fX,Y] + (Yf)X \to f[X,Y]</math>. | | | 5 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{f[X,Y]}</math> || Fact (3) || <math>[fX,Y] + (Yf)X \to f[X,Y]</math> |
| | |- |
| | | 6 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]}) || Fact (1) || <math>\nabla_{f[X,Y]} \to f\nabla_{[X,Y]}</math> |
| |} | | |} |
|
| |
|
Line 82: |
Line 84: |
| | 4 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{[X,fY] - (Xf)Y}</math> || <math>\nabla</math> is additive in its subscript argument. || <math>\nabla_{[X,fY]} - \nabla_{(Xf)Y} \to \nabla_{[X,fY] - (Xf)Y}</math>. | | | 4 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{[X,fY] - (Xf)Y}</math> || <math>\nabla</math> is additive in its subscript argument. || <math>\nabla_{[X,fY]} - \nabla_{(Xf)Y} \to \nabla_{[X,fY] - (Xf)Y}</math>. |
| |- | | |- |
| | 5 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]}</math> || Fact (3) || <math>[X,fY] - (Xf)Y \to f[X,Y]</math> | | | 5 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{f[X,Y]}</math> || Fact (3) || <math>[X,fY] - (Xf)Y \to f[X,Y]</math> |
| | |- |
| | | 6 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]})</math> || Fact (1) || <math>\nabla_{f[X,Y]} \to f\nabla_{[X,Y]}</math> |
| |} | | |} |
|
| |
|
This article gives the statement, and possibly proof, that a map constructed in a certain way is tensorial
View other such statements
Statement
Let
be a connection on a vector bundle
over a differential manifold
. The Riemann curvature tensor of
is given as a map
defined by:
We claim that
is a tensorial map in each of the variables
.
Related facts
Facts used
Fact no. |
Name |
Statement with symbols
|
1 |
Any connection is -linear in its subscript argument |
for any -function and vector field .
|
2 |
The Leibniz-like axiom that is part of the definition of a connection |
For a function and vector fields , and a connection , we have
|
3 |
Corollary of Leibniz rule for Lie bracket (in turn follows from leibniz rule for derivations |
For a function and vector fields :
![{\displaystyle \!f[X,Y]=[fX,Y]+(Yf)X}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5c70e73372d3de476cbaa79feca611dcbf63f66d)
|
Proof
To prove tensoriality in a variable, it suffices to show
-linearity in that variable. This is because linearity in
-functions guarantees linearity in a function that is 1 at exactly one point, and zero at others.
The proofs for
and
are analogous, and rely on manipulation of the Lie bracket
and the property of a connection being
in the subscript vector. These proofs do not involve any explicit use of
. The proof for
relies simply on repeated application of the product rule, and the fact that
.
Tensoriality in the first variable
Given:
is a
-function.
To prove:
, or more explicitly,
We start out with the left side:
Each step below is obtained from the previous one via some manipulation explained along side.
Step no. |
Current status of left side |
Facts/properties used |
Specific rewrites
|
1 |
![{\displaystyle f\nabla _{X}\nabla _{Y}-\nabla _{Y}(f\nabla _{X})-\nabla _{[fX,Y]}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/24c161bb16508cef218c7ce323a77f6f09e2d835) |
Fact (1): is -linear in its subscript argument. |
|
2 |
![{\displaystyle f\nabla _{X}\nabla _{Y}-(Yf)\nabla _{X}-f\nabla _{Y}\nabla _{X}-\nabla _{[fX,Y]}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/844410b698a59273250425676efcb0c29ed9ff3d) |
Fact (2) |
. To understand this more clearly imagine an input to the whole expression, so that the rewrite becomes . In the notation of fact (3), , , and .
|
3 |
![{\displaystyle f(\nabla _{X}\nabla _{Y}-\nabla _{Y}\nabla _{X})-\nabla _{(Yf)X}-\nabla _{[fX,Y]}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fd9e1e7294b88d5859ca975cf216cf58f0dec1bb) |
Fact (1) |
|
4 |
![{\displaystyle f(\nabla _{X}\nabla _{Y}-\nabla _{Y}\nabla _{X})-\nabla _{(Yf)X+[fX,Y]}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1e19c6d1389a9918b61100329f2f8449cbc2a1fd) |
is additive in its subscript argument |
|
5 |
![{\displaystyle f(\nabla _{X}\nabla _{Y}-\nabla _{Y}\nabla _{X})-\nabla _{f[X,Y]}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5321794fc5484a7bf7e64bffbb2159d5af1c8932) |
Fact (3) |
|
6 |
|
Tensoriality in the second variable
Given:
is a
-function.
To prove:
, or more explicitly,
.
We start out with the left side:
Each step below is obtained from the previous one via some manipulation explained along side.
Step no. |
Current status of left side |
Facts/properties used |
Specific rewrites
|
1 |
![{\displaystyle \nabla _{X}(f\nabla _{Y})-f\nabla _{Y}\nabla _{X}-\nabla _{[X,fY]}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/82c74a667ff2b14125b26587befc0df6ed64be65) |
Fact (1) |
.
|
2 |
![{\displaystyle (Xf)\nabla _{Y}+f(\nabla _{X}\nabla _{Y})-f\nabla _{Y}\nabla _{X}-\nabla _{[X,fY]}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4fe6fc708287f702eeae47ed87a5bc61ec75eca8) |
Fact (2) |
. To make this more concrete, imagine an input . Then, the rewrite becomes . This comes setting , , in Fact (3).
|
3 |
![{\displaystyle f(\nabla _{X}\nabla _{Y}-\nabla _{Y}\nabla _{X})-\nabla _{[X,fY]}+\nabla _{(Xf)Y}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b34a71786e59b3b00bbf0ca75ba46a01c8fa63fb) |
Fact (1) |
|
4 |
![{\displaystyle f(\nabla _{X}\nabla _{Y}-\nabla _{Y}\nabla _{X})-\nabla _{[X,fY]-(Xf)Y}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2a9fcafe3184451ff871d6bfaace7e20c4d87192) |
is additive in its subscript argument. |
.
|
5 |
![{\displaystyle f(\nabla _{X}\nabla _{Y}-\nabla _{Y}\nabla _{X})-\nabla _{f[X,Y]}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5321794fc5484a7bf7e64bffbb2159d5af1c8932) |
Fact (3) |
|
6 |
![{\displaystyle f(\nabla _{X}\nabla _{Y}-\nabla _{Y}\nabla _{X}-\nabla _{[X,Y]})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8adfa3b6ed85e7f41d546b4ced555abaa1af8811) |
Fact (1) |
|
Tensoriality in the third variable
Given: A
-function
.
To prove:
. More explicitly,
.
We start out with the left side:
Each step below is obtained from the previous one via some manipulation explained along side.
Step no. |
Current status of left side |
Facts/properties used |
Specific rewrites
|
1 |
![{\displaystyle \!\nabla _{X}((Yf)(Z)+f\nabla _{Y}Z)-\nabla _{Y}((Xf)Z+f\nabla _{X}Z)-f\nabla _{[X,Y]}Z-([X,Y]f)Z}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dd0474534e5ebd4d2b97cf1212e54176fd416b27) |
Fact (2) |
and
|
2 |
![{\displaystyle \!(XYf)(Z)+(Yf)\nabla _{X}Z+(Xf)\nabla _{Y}Z+f\nabla _{X}\nabla _{Y}Z-(YXf)Z-(Xf)\nabla _{Y}Z-(Yf)\nabla _{X}Z-f\nabla _{Y}\nabla _{X}Z-f\nabla _{[X,Y]}Z-([X,Y]f)Z}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b099db214bc0bc77aa2b75dbe38069998ae17033) |
Fact (2) |
, etc.
|
3 |
![{\displaystyle f(\nabla _{X}\nabla _{Y}-\nabla _{Y}\nabla _{X}-\nabla _{[X,Y]})Z+((XY-YX-[X,Y])f)Z}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2eadabe1770918f9a7929c39fe9b3d76528e3c43) |
-- |
cancellations
|
4 |
![{\displaystyle f(\nabla _{X}\nabla _{Y}-\nabla _{Y}\nabla _{X}-\nabla _{[X,Y]})Z+((XY-YX-[X,Y])f)Z}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2eadabe1770918f9a7929c39fe9b3d76528e3c43) |
use , definition |
cancellation
|