Curvature is tensorial: Difference between revisions

From Diffgeom
Line 56: Line 56:
| 4 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{(Yf)X + [fX,Y]}</math> || <math>\nabla</math> is additive in its subscript argument || <math>\nabla_{(Yf)X} + \nabla_{[fX,Y]} = \nabla_{(Yf)X + [fX,Y]}</math>
| 4 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{(Yf)X + [fX,Y]}</math> || <math>\nabla</math> is additive in its subscript argument || <math>\nabla_{(Yf)X} + \nabla_{[fX,Y]} = \nabla_{(Yf)X + [fX,Y]}</math>
|-
|-
| 5 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]})</math> || Fact (3) || <math>[fX,Y] + (Yf)X \to f[X,Y]</math>.
| 5 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{f[X,Y]}</math> || Fact (3) || <math>[fX,Y] + (Yf)X \to f[X,Y]</math>
|-
| 6 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]}) || Fact (1) || <math>\nabla_{f[X,Y]} \to f\nabla_{[X,Y]}</math>
|}
|}


Line 82: Line 84:
| 4 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{[X,fY] - (Xf)Y}</math> || <math>\nabla</math> is additive in its subscript argument. || <math>\nabla_{[X,fY]} - \nabla_{(Xf)Y} \to \nabla_{[X,fY] - (Xf)Y}</math>.
| 4 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{[X,fY] - (Xf)Y}</math> || <math>\nabla</math> is additive in its subscript argument. || <math>\nabla_{[X,fY]} - \nabla_{(Xf)Y} \to \nabla_{[X,fY] - (Xf)Y}</math>.
|-
|-
| 5 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]}</math> || Fact (3) || <math>[X,fY] - (Xf)Y \to f[X,Y]</math>
| 5 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X) - \nabla_{f[X,Y]}</math> || Fact (3) || <math>[X,fY] - (Xf)Y \to f[X,Y]</math>
|-
| 6 || <math>f(\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]})</math> || Fact (1) || <math>\nabla_{f[X,Y]} \to f\nabla_{[X,Y]}</math>
|}
|}



Revision as of 00:09, 20 December 2011

This article gives the statement, and possibly proof, that a map constructed in a certain way is tensorial
View other such statements

Statement

Let be a connection on a vector bundle over a differential manifold . The Riemann curvature tensor of is given as a map defined by:

We claim that is a tensorial map in each of the variables .

Related facts

Facts used

Fact no. Name Statement with symbols
1 Any connection is -linear in its subscript argument for any -function and vector field .
2 The Leibniz-like axiom that is part of the definition of a connection For a function and vector fields , and a connection , we have
3 Corollary of Leibniz rule for Lie bracket (in turn follows from leibniz rule for derivations For a function and vector fields :



Proof

To prove tensoriality in a variable, it suffices to show -linearity in that variable. This is because linearity in -functions guarantees linearity in a function that is 1 at exactly one point, and zero at others.

The proofs for and are analogous, and rely on manipulation of the Lie bracket and the property of a connection being in the subscript vector. These proofs do not involve any explicit use of . The proof for relies simply on repeated application of the product rule, and the fact that .

Tensoriality in the first variable

Given: is a -function.

To prove: , or more explicitly,

We start out with the left side:

Each step below is obtained from the previous one via some manipulation explained along side.

Step no. Current status of left side Facts/properties used Specific rewrites
1 Fact (1): is -linear in its subscript argument.
2 Fact (2) . To understand this more clearly imagine an input to the whole expression, so that the rewrite becomes . In the notation of fact (3), , , and .
3 Fact (1)
4 is additive in its subscript argument
5 Fact (3)
6

Tensoriality in the second variable

Given: is a -function.

To prove: , or more explicitly, .

We start out with the left side:

Each step below is obtained from the previous one via some manipulation explained along side.

Step no. Current status of left side Facts/properties used Specific rewrites
1 Fact (1) .
2 Fact (2) . To make this more concrete, imagine an input . Then, the rewrite becomes . This comes setting , , in Fact (3).
3 Fact (1)
4 is additive in its subscript argument. .
5 Fact (3)
6 Fact (1)

Tensoriality in the third variable

Given: A -function .

To prove: . More explicitly, .

We start out with the left side:

Each step below is obtained from the previous one via some manipulation explained along side.

Step no. Current status of left side Facts/properties used Specific rewrites
1 Fact (2) and
2 Fact (2) , etc.
3 -- cancellations
4 use , definition cancellation