Isometry: Difference between revisions

From Diffgeom
No edit summary
 
m (1 revision)
 
(No difference)

Latest revision as of 19:47, 18 May 2008

Definition

Symbol-free definition

A function from a metric space (often, a Riemannian manifold) to another is termed an isometry if it preserves distance between points.

Definition with symbols

Let (M,d) and (M,d) be metric spaces. A function f:MM is termed an isometry if for all x,yM:

d(x,y)=d(f(x),f(y))

We are often concerned with self-isometries of a metric space, viz isometries from a metric space to itself.