Ricci-flat metric

From Diffgeom

This article defines a property that makes sense for a Riemannian metric over a differential manifold

This property of a Riemannian metric is Ricci flow-preserved, that is, it is preserved under the forward Ricci flow

This is the property of the following curvature being everywhere zero: Ricci curvature

Definition

Symbol-free definition

A Riemannian metric on a differential manifold is said to be Ricci-flat if the Ricci curvature is zero at all points.

Definition with symbols

Let (M,g) be a Riemannian manifold. Then g is termed a Ricci-flat metric if Rij(g)=0 at all points.

Relation with other properties

Stronger properties

Weaker properties

Metaproperties

Direct product-closedness

This property of a Riemannian metric on a differential manifold is closed under taking direct products of manifolds

Given two Riemannian manifolds (M,g1) and (N,g2), such that both g1 and g2 are Ricci-flat, the natural induced metric on M×N is also Ricci-flat.