Circle in the plane
A generalization to higher dimensions is sphere in Euclidean space
Definition
General definition
Consider , the Euclidean plane. Let be a point and be a positive real number. The circle with center and radius is the set of all points in that have distance exactly from .
Some easy facts:
- Two circles centered at the same point are termed concentric circles. Given two concentric circles, there is a dilation, or scaling, about the common center that takes one circle to the other
- Given two circles of the same radius but with different centers, there is a translation of that sends one circle to the other. Namely, choose the translation that sends the center of the first circle, to the center of the second circle.
- The group of all orthogonal motions fixing the origin, sends each circle centered at the origin, to itself
Variant definitions
In complex analysis, it is sometimes convenient to view a line as a circle. We think of the center of the line as being a point at infinity, and the radius as infinity. This makes the theory of inversion, the geometric intuition behind complex analysis, as well as coaxial systems of circles, easier to comprehend.