Ricci-flat metric

From Diffgeom
Revision as of 03:55, 7 March 2007 by Vipul (talk | contribs) (Started the page)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

This article defines a property that makes sense for a Riemannian metric over a differential manifold

Definition

Symbol-free definition

A Riemannian metric on a differential manifold is said to be Ricci-flat if the Ricci curvature is zero at all points.

Definition with symbols

Let be a Riemannian manifold. Then is termed a Ricci-flat metric if at all points.

Relation with other properties

Stronger properties

Weaker properties