Ricci-flat metric

From Diffgeom
Revision as of 19:42, 22 May 2007 by Vipul (talk | contribs)

This article defines a property that makes sense for a Riemannian metric over a differential manifold

This property of a Riemannian metric is Ricci flow-preserved, that is, it is preserved under the forward Ricci flow

This is the property of the following curvature being everywhere zero: Ricci curvature

Definition

Symbol-free definition

A Riemannian metric on a differential manifold is said to be Ricci-flat if the Ricci curvature is zero at all points.

Definition with symbols

Let be a Riemannian manifold. Then is termed a Ricci-flat metric if at all points.

Relation with other properties

Stronger properties

Weaker properties

Metaproperties

Template:DP-closed Riemannian metric property

Given two Riemannian manifolds and , such that both and are Ricci-flat, the natural induced metric on is also Ricci-flat.