Timewise-average function

From Diffgeom
Revision as of 20:10, 18 May 2008 by Vipul (talk | contribs) (5 revisions)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Definition

Let M be a differential manifold equipped with a measure over which we can integrate.

Let u:R×MR be any continuous function. Then the timewise-average function of u is a map f:RR defined by:

f(t)=Mu(t,x)dxMdx

For instance, the above notion makes sense if we embed the manifold in Euclidean space and look at the induced measure, or in a Riemannian manifold where we take the naturally induced measure.

Related notions