Want site search autocompletion? See here Encountering 429 Too Many Requests errors when browsing the site? See here
The Riemann curvature tensor is an alternating tensor, or an antisymmetric tensor, in the first two variables. In other words:
R ( X , Y ) = − R ( Y , X ) {\displaystyle R(X,Y)=-R(Y,X)}
The proof is based on the fact that [ X , Y ] = − [ Y , X ] {\displaystyle [X,Y]=-[Y,X]}
We have:
R ( X , Y ) = ∇ X ∘ ∇ Y − ∇ Y ∘ ∇ X − ∇ [ X , Y ] = − ( ∇ Y ∘ ∇ X − ∇ X ∘ ∇ Y − ∇ [ Y , X ] ) = − R ( Y , X ) {\displaystyle R(X,Y)=\nabla _{X}\circ \nabla _{Y}-\nabla _{Y}\circ \nabla _{X}-\nabla _{[X,Y]}=-\left(\nabla _{Y}\circ \nabla _{X}-\nabla _{X}\circ \nabla _{Y}-\nabla _{[Y,X]}\right)=-R(Y,X)} .