Difference between revisions of "Differential manifold"

From Diffgeom
Jump to: navigation, search
Line 1: Line 1:
A '''differential manifold''' is the following data:
A '''differential manifold''' or '''smooth manifold''' is the following data:
* A [[topological space]] <math>M</math>
* A [[topological space]] <math>M</math>

Revision as of 08:16, 27 August 2007


A differential manifold or smooth manifold is the following data:

  • A topological space M
  • An atlas of coordinate charts on M to \R^n (in other words an open cover of M with homeomorphisms from each member of the open cover to open sets in \R^n

satisfying the compatibility condition: the transition function between any two coordinate charts of the atlas is a diffeomomorphism of open subsets of \R^n.

By diffeomorphism, we here mean a C^{\infty} map with a C^{\infty} inverse.

upto the following equivalence:

Two atlases of coordinate charts on a topological space define the same differential manifold structure if given any coordinate chart in one and any coordinate chart in the other, the transition function between them is a diffeomorphism.

Relation with other structures

Weaker structures