Hyperbolic manifold

From Diffgeom
Revision as of 19:47, 18 May 2008 by Vipul (talk | contribs) (3 revisions)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

This article defines a property that makes sense for a Riemannian metric over a differential manifold

Definition

Symbol-free definition

A Riemannian manifold is said to be hyperbolic if it is complete and has constant sectional curvature equal to -1.

Relation with other properties

Weaker properties