Torsion is tensorial
This article gives the statement, and possibly proof, that a map constructed in a certain way is tensorial
View other such statements
Contents
Statement
Let be a differential manifold and
be a linear connection on
(viz.,
is a connection on the tangent bundle
of
).
Consider the torsion of , namely:
given by:
Then, is a tensorial map in both coordinates. In other words, the value of
at a point
depends only on
and does not depend on the values of the vectors fields
at points other than
.
More explicitly, for any point ,
defines a bilinear map:
Further, since in fact torsion is antisymmetric, this is an alternating bilinear map.
Related facts
Facts used
Fact no. | Name | Statement with symbols |
---|---|---|
1 | Any connection is ![]() |
![]() ![]() ![]() ![]() |
2 | The Leibniz-like axiom that is part of the definition of a connection | For a function ![]() ![]() ![]() ![]() |
3 | Corollary of Leibniz rule for Lie bracket (in turn follows from Leibniz rule for derivations | For a function ![]() ![]() |
Proof
To prove tensoriality in a variable, it suffices to show -linearity in that variable. This is because linearity in
-functions guarantees linearity in a function that is 1 at exactly one point, and zero at others.
The proofs for and
are analogous, and rely on manipulation of the Lie bracket
and the property of a connection being
in the subscript vector.
Tensoriality in the first coordinate
Given: is
-function
To prove:
Proof: We start out with the left side:
Each step below is obtained from the previous one via some manipulation explained along side.
Step no. | Current status of left side | Facts/properties used | Specific rewrites |
---|---|---|---|
1 | ![]() |
Definition of torsion | whole thing |
2 | ![]() |
Fact (1): ![]() |
![]() |
3 | ![]() |
Fact (2): The Leibniz-like axiom that's part of the definition of a connection | ![]() |
4 | ![]() |
parenthesis rearrangement | -- |
5 | ![]() |
Fact (3) | ![]() |
6 | ![]() |
factor out | -- |
7 | ![]() |
use definition of torsion | ![]() |
Tensoriality in the second coordinate
The proof is analogous to that for the first coordinate.
To prove
Proof: This is similar to tensoriality in the first coordinate.