Bureaucrats, emailconfirmed, Administrators

184

edits
Jump to: navigation, search

no edit summary

Then the Mobius strip is the trace of a moving open line segment of length twice the half-width whose center traces the midcircle, and which rotates at a rate of half that at which it revolves.

There is also another, diffeomorphic, notion of Mobius strip which is very different in the sense of its metric. Check out [[flat Mobius strip]].

==Equational descriptions==

<math>(x,1) \sim (-x,-1), (1,y) \sim (-1,y)</math>

{{double cover|right circular cylinder}}

The Mobius strip has a double cover which is the right circular cylinder. However, the pull-back metric on this is not the same as the usual metric on the right circular cylinder.

==Structure and symmetry==

===Homeomorphisms===

Topologically, any two points on the Mobius strip are equivalent, viz there is a homeomorphism taking any point to any other point.

===Isometries===

The Mobius strip seems to have no nontrivial isometry.

==Curvatures==

==Properties==

{{nonorientable surface}}

The Mobius strip is a nonorientable surface. Thus, any compactification of it is also nonorientable. Hence, from the fact that [[orientable equals 3-embeddable|for compact surfaces orientability is equivalent to embeddability]] in <math>\R^3</math>, we conclude that no compactification of the Mobius strip can be embedded in <math>\R^3</math>.

{{negatively curved surface}}

From the curvature computations above, it is clear that the Gaussian curvature of the Mobius strip is everywhere negative.

{{ruled surface}}

At every point on the Mobius strip, it is possible to draw a lien segment containing that point that lies entirely on the Mobius strip.

Retrieved from "https://diffgeom.subwiki.org/wiki/Special:MobileDiff/959"