Bound-narrowing trajectory
This article defines a property that can be evaluated for a trajectory on the space of functions on a manifold
Definition
Let be a manifold and be a function , where:
- denotes the time parameter, and varies in
- denotes the spatial parameter, and varies in
In other words, is a trajectory (or path) in the space of all functions from to .
Then, is said to be bound-narrowing if it is both max-decreasing and min-increasing or equivalently if it satisfies the following condition: